Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion.

نویسندگان

  • Saïd Nemmiche
  • Daoudi Chabane-Sari
  • Malika Kadri
  • Pascale Guiraud
چکیده

Cadmium (Cd) is a widespread environmental contaminant. Cd affects the cellular homeostasis and generates damage via complex mechanisms involving interactions with other metals, induction of oxidative stress and apoptotic or necrotic cell death, depending on the cell type and the concentration. The goal of the present study was to investigate the effect of exposure to CdCl(2) on the intracellular trace elements levels, the antioxidant enzyme activities and on DNA damage in the Jurkat T cell line. Cells were exposed to 5, 25 and 50 μM of CdCl(2) for 24 h. Cd significantly reduced the viability of Jurkat T cells and induced a dose-dependent increase in DNA damage with statistically significant differences relative to controls (p<0.001); the superoxide dismutase and glutathione peroxidase activities were significantly decreased. Lipid peroxidation and protein carbonyl levels were significantly increased while glutathione and the total intracellular sulfhydryl groups were decreased showing clearly that an oxidative stress was generated by Cd. Surprisingly the treatment with Cd induced a significant increase in the intracellular levels of all the trace elements measured. The results indicate that cellular pro-oxidative stress induced by Cd is most likely mediated by disruption of redox homeostasis associated to a mishandling of redox-active transition metals and causes lipid and protein oxidation and oxidative DNA damage in Jurkat T cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line

In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line

In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium. Although there have been numerous studies examining the effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology in vitro : an international journal published in association with BIBRA

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2011